Microbial Quality and Safety of Well Water in Rural Nicaragua as Determined by Low Cost Bacterial Test

Patricia Weiss¹, Tiông Gim Aw², Joan B. Rose²

¹School of Public Health, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48824, United States.
²Department of Fisheries and Wildlife, 3 Natural Resources, Michigan State University, East Lansing, Michigan, 48824, United States.

Introduction

In total, 783 million people still lack access to improved drinking water sources. About 2.5 billion people lack access to improved sanitation and some 1.1 billion people practice open defecation. The majority of these people live in rural areas of developing countries. Even with improved access, which is often wells, no water quality testing has been done. Thus, water safety of this rural water supply in developing countries still remains questionable (UNICEF and World Health Organization, 2012).

Indicator bacteria such as E. coli, are used to determine the sanitary quality of water and to indicate the possible presence of other disease causing microorganisms in water (Pepper et al., 1996). The main objective of this study was to determine the microbial water quality of drinking water from wells in rural Nicaragua using the Compartment Bag Test (CBT). CBT is a low cost E. coli detection method, which is developed for low resource settings in order to quantify the sanitary quality of water used for drinking.

Study Location

Samples were collected from a small, rural village called Pueblo Nuevo. The village lies on the east coast of Nicaragua, near the Rio Wawashang Reserve.

Fig. 2. Types of wells sampled (simple and rope-pump). The wells served a range of 4 to 20 people and 1 to 4 families.

Cases of Illness in Pueblo Nuevo (2012)

Respiratory Infections: 8,750
Water-related Diarrhea: 5,675
Parasites: 2,850

Methods

Membrane filtration (1.4 – 1.8 liters of well water) and qPCR

E. coli, enterococci

Microbial source tracking markers: Bacteroides thetaiotaomicron (human), M2 (bovine)

Results

- 32 wells total
- 87.5% of wells contaminated with E. coli
- Contamination ranged from 5.5 - 404.5 MPN/100 ml (Geometric mean 22/100 ml)

Comparison of E. coli MPN between simple and rope-pump wells

The geometric mean for simple and rope-pump wells was found to be 34.37 and 12.34 MPN/100ml respectively. This shows 64.1% reduction in E. coli from simple wells to rope-pump wells (a log-transformed t-test, t value = -2.11 and p value = 0.02).

Table 1. qPCR detection of molecular markers (No. sample tested: 31)

<table>
<thead>
<tr>
<th>qPCR assay</th>
<th>No. sample positive</th>
<th>Average concentration (copies/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>5</td>
<td>5.5 x 10⁴</td>
</tr>
<tr>
<td>Enterococci</td>
<td>6</td>
<td>1.1 x 10⁵</td>
</tr>
<tr>
<td>M2 marker (bovine)</td>
<td>4</td>
<td>4.3 x 10⁵</td>
</tr>
<tr>
<td>B. theta marker (human)</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Acknowledgements

Michigan State University School of Public Health and College of Human Medicine
The Water Quality, Environmental, and Molecular Microbiology Laboratory, MSU.

For more information contact:
Patricia Weiss—weissp@broad.msu.edu
Tiông Gim Aw—tgaw@msu.edu

References


Fig. 3. Transportation and incubation of CBT

Fig. 4. Flowchart of steps used to prepare CBT

Fig. 5. Membrane filtration on-site

Fig. 6. The average MPN of samples relative to depth of wells

Fig. 7. The average MPN of samples relative to elevation of wells

Fig. 8. Levels of contamination based on Comprehensive Water Quality Rating

Fig. 9. Cattle passing by well

Fig. 1. Map of Nicaragua with Pueblo Nuevo circled.

Fig. 9. Cattle passing by well

Fig. 6. The average MPN of samples relative to depth of wells

Fig. 7. The average MPN of samples relative to elevation of wells

Fig. 8. Levels of contamination based on Comprehensive Water Quality Rating

Table 1. qPCR detection of molecular markers (No. sample tested: 31)

<table>
<thead>
<tr>
<th>qPCR assay</th>
<th>No. sample positive</th>
<th>Average concentration (copies/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>5</td>
<td>5.5 x 10⁴</td>
</tr>
<tr>
<td>Enterococci</td>
<td>6</td>
<td>1.1 x 10⁵</td>
</tr>
<tr>
<td>M2 marker (bovine)</td>
<td>4</td>
<td>4.3 x 10⁵</td>
</tr>
<tr>
<td>B. theta marker (human)</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>